Intracellular oxygen diffusion: the roles of myoglobin and lipid at cold body temperature.

نویسنده

  • B D Sidell
چکیده

Cold temperature can constrain the rate of oxygen movement through muscle cells of ectothermic animals because the kinetic energy of the solvent-solute system decreases and the viscosity of the aqueous cytoplasm increases during cooling within the physiological range of body temperatures. These factors affect the movement of both dissolved oxygen and oxymyoglobin, the two predominant routes of intracellular oxygen diffusion in vertebrate oxidative muscles. In addition, reductions in temperature have been shown to increase the affinity of myoglobin for oxygen and to slow the rate of Mb O2-dissociation, compromising the ability of this oxygen-binding protein to facilitate intracellular oxygen diffusion. Experiments with both seasonally cold-bodied fishes and polar fish species suggest that several factors combine to overcome these limitations in delivery of oxygen from the blood to the mitochondria. First, reductions in body temperature induce increases in mitochondrial density of oxidative muscle cells, reducing the mean diffusional pathlength for oxygen between capillaries and mitochondria. Second, cold body temperature in both temperate-zone and polar fishes is frequently correlated with a high content of neutral lipid in oxidative muscles, providing an enhanced diffusional pathway for oxygen through the tissue. Third, recent data indicate that myoglobins from fish species bind and release oxygen more rapidly at cold temperature than do those from mammals. Data from both oxidative skeletal muscle and cardiac muscle of fishes suggest that these factors in various combinations contribute to enhance the aerobically supported mechanical performance of the tissues at cold cellular temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study of Oxygen Transport in the Body of Living Organism (RESEARCH NOTE)

Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...

متن کامل

A Computational Study of Oxygen Transport in the Body of Living Organism

Oxygen is an essential part of the living organism. It is transported from blood to the body tissue by the systematic circulation and large part of it is stored in the blood flowing in capillaries. In this work we discuss a mathematical model for oxygen transport in tissues. The governing equations are established assuming that the blood is flowing along a co-axial cylindrical capillary inside ...

متن کامل

Oxygen affinity and amino acid sequence of myoglobins from endothermic and ectothermic fish.

Myoglobin (Mb) buffers intracellular O2 and facilitates diffusion of O2 through the cell. These functions of Mb will be most effective when intracellular PO2 is near the partial pressure of oxygen at which Mb is half saturated (P50) of the molecule. We test the hypothesis that Mb oxygen affinity has evolved such that it is conserved when adjusted for body temperature among closely related anima...

متن کامل

Myoglobin's old and new clothes: from molecular structure to function in living cells.

Myoglobin, a mobile carrier of oxygen, is without a doubt an important player central to the physiological function of heart and skeletal muscle. Recently, researchers have surmounted technical challenges to measure Mb diffusion in the living cell. Their observations have stimulated a discussion about the relative contribution made by Mb-facilitated diffusion to the total oxygen flux. The calcu...

متن کامل

Comparison of Effectiveness of Two Polyethylene Covers on Body Temperature and Oxygen Saturation of Neonates Transferring to NICUs

Background: The sudden exposure of premature newborns to a cold and dry environment can lead to hypothermia. This study aimed at comparing the effectiveness of two polyethylene covers on the body temperature and oxygen saturation of premature neonates. Methods: This experimental study was conducted on 72 premature newborns in the neonatal int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 201 Pt 8  شماره 

صفحات  -

تاریخ انتشار 1998